[도서리뷰] 한빛미디어 '머신러닝 파워드 애플리케이션'

▲ 머신러닝 파워드 애플리케이션

이 포스트는 한빛미디어에서 출간한 '머신러닝 파워드 애플리케이션' 을 읽고 작성한 서평입니다.

INTRO

이 책에서 소개하는 머신러닝 파워드 애플리케이션는 머신러닝 기반 애플리케이션을 설계, 구축, 배포하는 과정에 필요한 모든 기술을 설명합니다. 초기 아이디어가 제품으로 개발되기까지 과정을 예제 프로젝트를 통해 학습하며, 데이터 과학자, 소프트웨어 엔지니어, 제품 관리자가 머신러닝 애플리케이션을 단계별로 구현하는 데 필요한 도구와 실무에서 맞딱뜨리게 되는 도전 과제와 모범 사례를 살펴봅니다. 유용한 코드와 친절한 그림, 업계 리더와의 인터뷰를 통해 실용적인 머신러닝 개념을 터득해 나갈 수 있게 도와줍니다.

아이디어가 현실이 되는 나만의 머신러닝 애플리케이션을 구현해 보세요!

책 소개

강력한 머신러닝 애플리케이션을 만드는 모든 과정을 설명하는 책

머신러닝에서 가장 어려운 부분인 문제 정의, 모델 디버깅, 배포를 건너뛰는 책은 너무나 많습니다. 하지만 이 책은 이런 문제에 초점을 맞춰 이야기를 풀어갑니다. 이 책을 읽으면 아이디어에 불과했던 프로젝트를 큰 영향을 발휘하는 애플리케이션으로 만들 수 있습니다.

_알렉산더 구드, Intuit 데이터 과학자

머신러닝 모델을 도입하는 방법, 잘못되기 쉬운 부분과 특별히 주의해야 할 사항에 대한 실용적인 조언을 찾고 있다면 바로 이 책이 답입니다. 10년 전에 이 책을 읽었더라면, 교훈을 찾아 헤매던 시간을 단축할 수 있었을 겁니다.

_루카스 텐서, 트위치 ML 수석 매니저

챕터별 요약

  • 1부: 아이디어를 머신러닝 문제로 표현하고 성능을 측정하는 방법을 배워 초기 계획을 세웁니다.
  • 2부: 첫 번째 파이프라인을 만들고, 초기 데이터셋을 탐색하고 시각화하는 법을 배웁니다.
  • 3부: 목표를 달성할 때까지 모델을 향상하는 방법을 살펴봅니다.
  • 4부: 모델 배포 시 고려해야 할 부분과 배포 방식, 모니터링 전략을 다룹니다.

대상 독자

  • 프로그래밍 경험과 머신러닝 기초 지식을 가진 누구나
  • 데이터 과학자, 머신러닝 엔지니어로 현업에 종사하는 개발자
  • 코딩은 모르지만 데이터 과학자와 함께 일해야 하는 직군

주요 내용

  • 제품의 목표를 정의하고 머신러닝 문제를 설정합니다.
  • 첫 번째 엔드투엔드 파이프라인을 빠르게 만들어 초기 데이터셋을 획득합니다.
  • 머신러닝 모델을 훈련, 평가하고 성능 병목을 해결합니다.
  • 제품 환경에 모델을 배포하고 모니터링합니다.

책을 읽고

▶ 주관적인 평점 : 4.5점 / 5.0점


해당 책은 일반적인 딥러닝/머신러닝 학습 도서가 아닌 개발자/엔지니어들을 위한 책이라고 생각합니다.

다양한 모델들을 만들고 살펴보는 것보다는 데이터 수집부터 서비스 개발까지 전체 파이프라인을 이해하고 실제 구축하는데 목적을 두고 있습니다.

개인적으로는 데이터 엔지니어링 업무가 예정되어 있어 일독하면서 흥미롭고 재미있게 읽었고 많은 부분에 인사이트를 얻을 수 있어 의미있는 학습 시간이었습니다.

데이터 개발자/엔지니어들을 위한 책이지만 협업 관계에 있는 분석가, 시스템 관리자들에게도 추천드리는 책입니다.

▲ 데이터 품질 관리

관련 링크